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The alternating segment di�erence scheme
for Burgers’ equation

Wenqia Wang∗;† and Tongchao Lu‡

School of Mathematics and System Sciences; Shandong University; Jinan; 250100;
People’s Republic of China

SUMMARY

We give a class of alternating segment Crank–Nicolson (ASC-N) method for solving the Burgers’
Equation. However, the ASC-N method was discussed only for solving the di�usion equation by Zhang
B. The basic idea of the method is that the grid points on same time level is divided into a number
of the groups, the di�erence equations of each group can be solved independently. The method is
unconditionally stable by analysis of linearization procedure. The numerical examples show that the
accuracy of the method is better than that of the method discussed by the other authors.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we consider the Burgers’ equation [1]

@u
@t
+ u

@u
@x
= �
@2u
@x2
; 0¡x¡L; 0¡t¡T (1)

with the following initial condition (2) and boundary conditions (3):

u(x; 0) = f(x); 0¡x¡L (2)
u(0; t) = g1(t); u(L; t)= g2(t); 0¡t¡T (3)

where �¿0 is a constant.
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1348 W. WANG AND T. LU

Burgers’ equation is a quasi-linear parabolic partial di�erential equation. It is one of the
very few nonlinear partial di�erential equation which can be solved exactly for an arbitrary
initial and boundary conditions. Burgers’ equation and Navier–Stokes equation are similar due
to the form of their nonlinear term and the occurrence of higher order derivatives with small
coe�cients � in both. Therefore, as an important simple model for understanding physical �ows
and testing e�ciency of the numerical methods of �uid �ow, many peoples are interested in
the numerical methods for solving this equation, e.g. References [2–12].
In the research of parallel �nite-di�erence methods for a parabolic partial di�erential equa-

tions, the alternating group explicit (AGE) methods and the alternating segment (block)
explicit–implicit (AS(B)E-I) methods can be found in References [13, 14]. Using the Crank–
Nicolson and Saul’yev-type schemes, Baolin Zhang also constructed the alternating segment
Crank–Nicolson (ASC-N) scheme in References [15, 16] for the di�usion equation.
In this paper, we construct the ASC-N scheme for Burgers’ equation. The basic idea of the

scheme is that the di�erence schemes at a certain same time level is designed as a number of
small size independent linear systems with the Crank–Nicolson scheme and four Saul’yev-type
asymmetric schemes, and these small size systems can be computed independently. The key
to these schemes is how Saul’yev-type di�erence schemes are constructed to assure stability
of the ASC-N scheme. The method is unconditionally stable by analysis of linearization
procedure, and simple and convenient in a practical sense. The numerical examples show that
the accuracy of the method is better than that of the existing method in References [8, 9, 11].

2. THE ASC-N SCHEME

Let h=�x and �=�t be the mesh sizes in the x and t directions, respectively, where h=L=m
and m is a positive integer. Let uni be the approximate solution for problem (1)–(3) computed
at the grid points (xi; tn), where xi= ih(i=0; 1; : : : ; m); tn= n�(n=1; 2; : : : ); tn+1=2 = tn+�=2. For
simplicity, we denote points (xi; tn) by (i; n), (xi; tn+1=2)= (xi; tn + �=2) by (i; n+ 1

2).
In order to construct the ASC-N scheme, we introduce the Crank–Nicolson scheme and

four Saul’yev-type asymmetric schemes for Equation (1). For simplicity, de�ne the following
notations:

@xuni =(u
n
i+1 − uni )=h; @ �xuni =(u

n
i − uni−1)=h; @x̂uni =(u

n
i+1 − uni−1)=(2h)

@tuni =(u
n+1
i − uni )=�; @2xu

n
i =(u

n
i+1 − 2uni + uni−1)=h2

2.1. The Crank–Nicolson scheme

The Crank–Nicolson scheme of Equation (1) at point (xi; tn+1=2) is

@tuni +
�uin

2
(
@x̂un+1i + @x̂uni

)
=
�
2
(@2xu

n+1
i + @2xu

n
i ) (4)

where �uin= u
n+1=2
i is given in the following way.
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ALTERNATING SEGMENT DIFFERENCE SCHEME FOR BURGERS’ EQUATION 1349

By the way in Reference [10], see Figure 1, the path of �uid particle A is CA, and the
velocity of �uid particle at point A(xi; tn+1=2) is given by u

n+1=2
i = unc . From de�nition of the

velocity, we get

unc =(xi − xc)
/( �
2

)
(5)

In addition, by linear interpolation formula, we have

unc ≈ uni +
uni − uni−1
xi − xi−1 (xc − xi) (6)

From (5) and (6), we obtain

unc ≈ �uni =
uni

1 +
�
2h
(uni − uni−1)

(7)

2.2. Saul’yev-type asymmetric schemes

The four asymmetric schemes approximating Equation (1) at the point (i; n+ 1
2) are given by

@tuni +
�uin

2

(
@x̂uni +

un+1i+1 − uni−1
2h

)
=
�
2
(@2xu

n
i + h

−1(@xun+1i − @ �xuni )) (8)

@tuni +
�uni
2

(
@x̂uni +

uni+1 − un+1i−1
2h

)
=
�
2
(@2xu

n
i + h

−1(@xuni − @ �xun+1i )) (9)

@tuni +
�uni
2

(
@x̂un+1i +

un+1i+1 − uni−1
2h

)
=
�
2
(@2xu

n+1
i + h−1(@xun+1i − @ �xuni )) (10)

@tuni +
�uin

2

(
@x̂un+1i +

uni+1 − un+1i−1
2h

)
=
�
2
(@2xu

n+1
i + h−1(@xuni − @ �xun+1i )) (11)

We will now consider the ASC-N method for either the number of inner points M =2Jl+l
or M =2Jl (J¿1; l¿3), where J and l are positive integers, and M =m− 1.
1. Case of M =2Jl+ l. Suppose that n is an even number, and the values uni of the nth

time level are given. To compute the approximate values un+1i of the solution u(x; t) at the

Figure 1. The path of �uid particle.
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nodes (xi; tn+1) of the (n+1)st time level and the values un+2i of the (n+2)nd time level, we
construct the ASC-N schemes with formula (4) and (8)–(11). The �ow chart of this schemes
is displayed in Figure 2. We use • to denote the Crank–Nicolson scheme (4), � to denote
the two asymmetric schemes (8) and (9), and � to denote the two asymmetric schemes (10)
and (11).
Let r= �=2h2, The matrix form of the ASC-N schemes is

(I+ rG(n)1 )U
n+1 = (I − rG(n)2 )Un + F1 (12a)

(I+ rG(n+1)2 )Un+2 = (I − rG(n+1)1 )Un+1 + F2 (12b)

n = 0; 2; 4; 6; : : :

where Un=(un1; u
n
2; : : : ; u

n
m−1)

T, F1 = (2rb1un0; 0; : : : ; 0, 2rcm−1un+1m )T, F2 = (2rb1un+20 ; 0; : : : ; 0;
2rcm−1un+1m )T, bi= �+ �uinh=2, ci= �− �uinh=2;Un;F1;F2 are (m−1) dimensional column vector.
The matrices G(n)1 and G(n)2 are the block diagonal matrices as follows:

G(n)1 = diag{Q(1)
2l ;Q

(2)
2l ; : : : ;Q

(J )
2l ;Q

(1)
l } (13a)

G(n)2 = diag{Q(2)
l ;Q

(2)
2l ; : : : ; Q

(J )
2l ;Q

(J+1)
2l } (13b)

where

Q(j)
2l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� −c1
−b2 2� −c2

. . . . . . . . .
−bl−1 2� −cl−1

−bl 3� −2cl
−2bl+1 3� −cl+1

−bl+2 2� −cl+2
. . . . . . . . .

−b2l−1 2� −c2l−1
−b2l �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2l×2l;

j=1; 2; : : : ; J

(11) (9) (8) (10) (11) (9)

(10)(8)(9)(11)(10)(8)

Figure 2. The diagram of the ASC-N scheme for M =2Jl+ l.
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Q
(1)
l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� −c1

−b2 2� −c2

. . . . . . . . .
−bl−1 2� −cl−1

−bl 3�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
l×l;

Q
(2)
l =

⎡
⎢⎢⎢⎢⎢⎣

3� −c1
−b2 2� −c2

. . . . . . . . .
−bl−1 2� −cl−1

−bl �

⎤
⎥⎥⎥⎥⎥⎦
l×l

In above formula, bi and ci depend the ordinal number j of the segment, e.g. bi and ci are
bnj−1+i and cnj−1+i on the (n+1)st time level or (n+2)nd time level, respectively, where nj−1
is the ordinal number of the right-endpoint of the (j − 1)st segment.
From formula (13) we see that the matrices G(n)1 and G(n+1)2 are block diagonal matrices,

and the ASC-N method decomposes the problem of size (m − 1) into a number of small
problems of size 2l or size l (see Figure 2 and formula (13)), hence this method is intrinsic
parallelism.
We may use alternatively the di�erence scheme (12a) for the (n + 1)st level and the

di�erence scheme (12b) for the (n+2)nd level to �nd the approximate values of the solution
of the problem (1)–(3) starting from the initial time level and using the boundary conditions,
and formula (12) is the matrix form for the ASC-N scheme.
2. Case of M =2Jl. To compute the approximate values un+1i of the solution u(x; t) at the

grid point (xi; tn+1) of the (n+1)st time level and the values un+2i of the (n+2)nd time level,
we group the grid points at the (n+1)st time level into J segments, each segment consisting
of 2l grid points, then group the grid points at the (n+2)nd time level into (J +1) segments.
The �rst segment and (J + 1)st segment consist of l grid points, the rest of the segments
consist of 2l grid points. The di�erence schemes of each segment are chosen as displayed in
Figure 3, resulting in the following di�erence schemes:

(I+ rĜ
(n)
1 )U

n+1 = (I − rĜ(n)2 )Un + F1 (14a)

(I+ rĜ
(n+1)
2 )Un+2 = (I − rĜ(n+1)1 )Un+1 + F2 (14b)

n = 0; 2; 4; 6; : : :

(11)

(11)

(9)

(9)

(8)

(8)

(10)

(10)

Figure 3. The diagram of the ASC-N scheme for M =2Jl.
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where Ĝ
(n)
1 and Ĝ

(n)
2 are the block diagonal matrices.

Ĝ
(n)
1 = diag{Q(1)

l ;Q
(2)
2l ; : : : ; Q

(J )
2l ;Q

(2)
l } (15a)

Ĝ
(n)
2 = diag{Q(2)

2l ;Q
(2)
2l ; : : : ; Q

(J−1)
2l ;Q

(1)
2l } (15b)

3. LINEAR STABILITY ANALYSIS AND NUMERICAL EXAMPLES

To analyse the linear stability of the ASC-N method, assume that �uin= a is a constant, and
the boundary condition is in full precision. Thus G(n)1 =G(n+1)1 =G1; G

(n)
2 =G(n+1)2 =G2, and

we may suppose g1(t)= g2(t)=0. Formula (12) can be rewritten as

Un=GUn−2

where G is the growth matrix, G=(I+ rG2)−1(I − rG1)(I+ rG1)−1(I − rG2), let

G̃=(I+ rG2)G(I+ rG2)−1 = (I − rG1)(I+ rG1)−1(I − rG2)(I+ rG2)−1

It is easy to prove easily that the matrices G1 and G2 are nonnegative real matrices. By
Kellogg lemmas [17]

‖(I − rGi)(I+ rGi)−1‖261; i=1; 2

Hence,

�(G)=�(G̃)6‖(I − rG1)(I+ rG1)−1‖2‖(I − rG2)(I+ rG2)−1‖261

where �(G) and �(G̃) are the spectral radii of the matrices G and G̃, respectively.
Therefore, the method given by (12) is unconditionally stable by the analysis of liberaliza-

tion procedure.
Similarly, we can prove the linear stability of the scheme (14).
To explain the accuracy and stability of the ASC-N scheme for the Burgers’ equation, we

now perform the following numerical experiments.

Example 1
In this example, Equation (1) has the exact solution as given in Reference [9]

u(x; t)=
0:1e−A + 0:5e−B + e−C

e−A + e−B + e−C
; 06x61; t¿0 (16)

where A=(0:05=�)(x − 0:5 + 4:95t), B=(0:25=�)(x − 0:5 + 0:75t), C=(0:5=�)(x − 0:375).
We compare the ASC-N scheme given in this paper with the scheme in Reference [9] in

terms of their absolute errors (A.E.) and numerical solution, where the absolute error (A.E.)
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Table I. The absolute errors of numerical solutions to Burgers’ equation for Example 1, m=10(h=0:1);
l=3; t=1:0; �=0:1; �= �=h2.

ASC-N PR DR Exact
Equation (12) (D)AGE [9] AGE-IMP [9] AGE-CN [9]

xj �=2:5 �=1:0 �=1:0 �=1:0 Solution

0.1 1:88× 10−4 1:83× 10−4 2:9× 10−2 1:60× 10−4 0.932745
0.2 3:52× 10−4 3:26× 10−4 6:1× 10−2 2:66× 10−4 0.911271
0.3 5:31× 10−4 3:88× 10−4 9:4× 10−2 2:59× 10−4 0.883314
0.4 1:02× 10−4 2:93× 10−4 1:236× 10−1 7:17× 10−5 0.847514
0.5 1:88× 10−4 9:6× 10−5 1:4498× 10−1 3:3× 10−4 0.802758
0.6 8:56× 10−4 6:94× 10−4 1:542× 10−1 8:94× 10−4 0.748601
0.7 1:42× 10−3 1:19× 10−3 1:4769× 10−1 1:45× 10−3 0.685736
0.8 1:85× 10−3 1:51× 10−3 1:2229× 10−1 1:71× 10−3 0.616304
0.9 1:46× 10−3 1:22× 10−3 7:485× 10−2 1:34× 10−3 0.543775

Number of No iteration 3 5 13
iterations

Table II. The numerical solutions to Burgers’ equation for Example 1, m=100(h=0:01),
l=11,t=0:5; �=0:003; �= �=h2.

ASC-N PR DR
Equation (12) (D)AGE [9] AGE-IMP [9] AGE-CN [9] Exact

xj �=50:0 �=1:0 �=1:0 �=1:0 solution

0.1 1.00000 1.0000 0.999999 1.000000 1.000000
0.2 1.00000 1.0000 0.999999 0.999999 1.000000
0.3 1.00000 1.0000 0.999995 0.999999 1.000000
0.4 1.00000 1.0000 0.992646 0.999999 1.000000
0.5 1.00000 1.0000 0.620463 1.000001 0.999985
0.6 0.95298 0.9552 0.360375 0.953063 0.941313
0.7 0.11430 0.1145 0.109650 0.114373 0.113837
0.8 0.10003 0.1000 0.100049 0.100026 0.100018
0.9 0.10000 0.1000 0.100000 0.100000 0.100000

Number of No iteration 2 10
iterations

is de�ned by

enj = |unj − u(xj; tn)|

To compare the results for Example 1, we take the same data as that in Reference [18]
for parameter � and space step h. The numerical results are given in Tables I and II. All
data in Tables I and II, except that the ones computed with the ASC-N scheme and the exact
solution, are taken from Reference [9].
We can see from Table II that the accuracy of the ASC-N scheme is good for large grid

ratio �(�= �=h2). This show that the stability of the ASC-N scheme is good. It agrees with
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1354 W. WANG AND T. LU

the previous stability analysis. These results imply that the ASC-N scheme may use large
time step.
Note that the method is simple and convenient in a practical sense, and it avoids the

problem of choosing iterative parameters as in Reference [9].

Example 2
We consider Equation (1) with the following initial-boundary conditions:

u(x; 0) = sin(�x)

u(0; t) = u(1; t)=0

This problem has the (exact) Fourier series solution

u(x; t)=2��
∑∞

k = 1 ak exp(−k2�2�t)k sin(k�x)
a0 +

∑∞
k = 1 ak exp(−k2�2�t) cos(k�x)

(17)

with Fourier coe�cients

a0 =
∫ 1

0
exp({−(3��)−1[1− cos(�x)]} dx

ak =
∫ 1

0
exp({−(3��)−1[1− cos(�x)]}) cos(k�x) dx (k=1; 2; 3; : : :)

For this problem, we �rst compare the ASC-N solutions, the EFD solution and the exact-
EFD solution [8]. The numerical results are displayed in Tables III and IV, where the EFD
and the exact-EFD represent the explicit �nite-di�erence scheme and the exact-explicit �nite-
di�erence scheme in Reference [8], respectively. In Reference [8], Kutluay et al.,
transformed the Burgers’ equation into the linear di�usion equation by using the Cole–Hoft
transformation [18], then the linear equation has been solved by the EFD and the exact-EFD
schemes. The ASC-N solution in Tables III and IV are obtained by the ASC-N scheme in
this paper; the rest of the results are taken from Reference [8].
Table III shows the numerical results for �=1:0 with h=0:1 or 0.025 at the time t=0:1.

In calculation, the time-step length of the ASC-N scheme is 500 times (or 200 times) as the
time-step length used in Reference [8] for h=0:1 (or h=0:025), and the accuracy of the
ASC-N solution is better than the EFD and exact-EFD solution. This shown that the stable
of the ASC-N scheme for the Burgers’ equation is very good. Table IV list the numerical
results for small value �=0:01 with h=0:0125 at di�erent times. The numerical results show
as same conclusion as in Table III.
Next, in order to show that the numerical solutions exhibit the correct physical behaviour,

we show the graphs of the numerical solutions in Figure 4 for di�usion coe�cient �=0:005.
Finally, we examine the convergence rate of the ASC-N scheme. The errors eh=

‖un− u‖L2 =
(∑m

i= 1 |u(xi; tn)− uni |2h
)1=2 at t=0:4 are displayed in Table V for di�erent mesh

re�nements, where un is the numerical solution, u is the values of exact solution at the grid
points. The errors appear to be order O(h2).
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Table III. Comparison of the numerical solutions for Example 2 for �=1:0 at t=0:1.

m=10(h=0:1) m=40(h=0:025)

ASC-N(l=3) EFD [8] Exact-EFD [8] ASC-N(l=13) EFD [8] Exact-EFD [8]
�=0:005 �=0:00001 �=0:00001 �=0:002 �=0:00001 �=0:00001 Exact

xj (20 steps) (10 000 steps) (10 000 steps) (50 steps) (10 000 steps) (10 000 steps) solution

0.1 0.11017 0.10863 0.11048 0.10955 0.10948 0.10959 0.10954
0.2 0.21106 0.20805 0.21159 0.20982 0.20967 0.20989 0.20979
0.3 0.29414 0.28946 0.29435 0.29195 0.29173 0.29204 0.29190
0.4 0.34943 0.34501 0.35080 0.34757 0.34773 0.34809 0.34792
0.5 0.37390 0.36845 0.37458 0.37129 0.37137 0.37175 0.37158
0.6 0.36194 0.35601 0.36189 0.35883 0.35884 0.35921 0.35905
0.7 0.31269 0.30728 0.31231 0.31020 0.30973 0.31004 0.30991
0.8 0.23030 0.22588 0.22955 0.22809 0.22769 0.22792 0.22782
0.9 0.12207 0.11966 0.12160 0.12085 0.12062 0.12074 0.12069

Table IV. Comparison the numerical solutions with exact solution at di�erent times for Example 2,
m=80(h=0:0125); �=0:01.

Numerical solution

ASC-N(l=6) EFD [8] Exact-EFD [8] Exact
xj tn �=0:01 �=0:0001 �=0:0001 solution

0.25 0.4 0.3420816 0.34244 0.34164 0.34191
0.6 0.2690232 0.26905 0.26890 0.26896
0.8 0.2214990 0.22145 0.22150 0.22148
1.0 0.1881942 0.18813 0.18825 0.18819
3.0 0.0751071 0.07509 0.07515 0.07511

0.5 0.4 0.6624275 0.67152 0.65606 0.66071
0.6 0.5304316 0.53406 0.52658 0.52942
0.8 0.4397358 0.44143 0.43743 0.43914
1.0 0.3747873 0.37568 0.37336 0.37442
3.0 0.1501911 0.15020 0.15015 0.15018

0.75 0.4 0.9140587 0.94675 0.90111 0.91026
0.6 0.7705525 0.78474 0.75862 0.76724
0.8 0.6496562 0.65659 0.64129 0.64740
1.0 0.5575667 0.56135 0.55187 0.55605
3.0 0.2248605 0.22502 0.22454 0.22481

In addition, when the ASC-N scheme is constructed, the point number using the C-N scheme
in each segment maybe inhomogeneous providing Equations (9) and (10), (8) and (11) are
used alternating at two adjacent points of the time level of even number and the level of odd
number, respectively (see Figure 2 or 3). Therefore, the point number of each segment on
same time level maybe inhomogeneous, for example, in Example 2, the point number of each
segment on same time level is inhomogeneous for m=80 or 200.
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1356 W. WANG AND T. LU

Figure 4. The ASC-N solutions of Example 2 for �=0:005, m=100, l=11, �=0:001.

Table V. Convergence rate of the ASC-N solutions for Example 2 at t=0:4; h=1=m; �=1:0.

m l � eh
eh
h2

50 7 2.5 4.7314E-05 1.1828E-01
100 11 2.5 6.9884E-06 6.9884E-02
256 17 2.62144 7.2224E-07 4.7333E-02
400 21 2.5 1.8329E-07 2.9326E-02

Example 3
We consider Equation (1) with the following boundary conditions:

u(0; t)= u(L; t)=0

and the initial conditions at time t=1 given by

u(x; 1)=
x

1 + exp
[
1
4�

(
x2 − 1

4

)]

This problem has the exact solution of the form [11]

u(x; t)=
x=t

1 + (t=t0)1=2 exp(x2=4�t)
(18)

where t0 = exp(1=8�).

The numerical solutions of Example 3 are given in Table VI for �=0:005, L=8 with
h=0:05 and �=0:0001 at tn=1:5, 3.0 and 4.5. The agreement between our numerical
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Table VI. Comparison of results of Example 3 at di�erent times for �=0:005 and [0,L] = [0,8] with
h=0:05 and �t=0:0001, m=160, l=53.

t=1:5 t=3:0 t=4:5

xj ASC-N B-SFEM [11] Exact ASC-N B-SFEM [11] Exact ASC–N B-SFEM [11] Exact

0.5 0.15329 0.15398 0.15327 0.06427 0.06468 0.06426 0.03799 0.03825 0.03799
1.0 0.26581 0.26634 0.26577 0.11882 0.11942 0.11880 0.07188 0.07231 0.07187
1.5 0.30415 0.30451 0.30412 0.15511 0.15576 0.15509 0.09794 0.09847 0.09793
2.0 0.26141 0.26190 0.26142 0.16763 0.16832 0.16762 0.11339 0.11399 0.11339
2.5 0.17213 0.17268 0.17217 0.15629 0.15699 0.15630 0.11698 0.11761 0.11698
3.0 0.08804 0.08839 0.08807 0.12736 0.12803 0.12738 0.10948 0.11011 0.10949
3.5 0.03581 0.03594 0.03582 0.09130 0.09185 0.09134 0.09367 0.09425 0.09369
4.0 0.01186 0.01189 0.01186 0.05795 0.05834 0.05798 0.07359 0.07409 0.07361
4.5 0.00325 0.00325 0.00325 0.03283 0.03305 0.03284 0.05328 0.05367 0.05330
5.0 0.00074 0.00074 0.00074 0.01673 0.01684 0.01674 0.03570 0.03597 0.03572

Figure 5. The ASC-N solutions of Example 3 for �=0:005, m=100, l=11, �=0:001.

solutions and exact solution is satisfactorily good. Since both solutions hit each other after
x=5:0, they are not given in Table VI.
Figure 5 illustrates the numerical and exact solutions of Example 3 at di�erent values of t

for �=0:005 with h=0:012 and �=0:05, and both solutions are drawn on the same diagram.
The expression ‘NUMER’ represent the numerical solution given by schemes (12), ‘EXACT’
represent the values of the exact solution. The graphic solutions in Figure 5 shows that the
numerical solutions and the exact solution agree nicely.
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